Mid-infrared frequency comb for QCL stabilisation and detectors assessment at 9µm
Djamal Gacemi  1@  , Livia Del Blazo, Yanko Todorov  2@  , Angela Vasanelli  3@  , Benoit Darquié  4@  , Olivier Lopez  5@  , Carlo Sirtori  1@  
1 : Laboratoire de physique de lÉNS - ENS Paris
École normale supérieure - Paris, Université Paris sciences et lettres, Sorbonne Université, Centre National de la Recherche Scientifique : UMR8023, Université de Paris
24, rue Lhomond75005 Paris -  France
2 : Laboratoire de Physique de l'Ecole normale supérieure
Ecole Normale Supérieure de Paris - ENS Paris : UMR8023
3 : Laboratoire de Physique de l'Ecole normale supérieure
Ecole Normale Supérieure de Paris - ENS Paris
4 : Laboratoire de Physique des Lasers
Université Paris 13, Sorbonne Paris Cité, CNRS, Villetaneuse, France
5 : Laboratoire de Physique des Lasers
Centre National de la Recherche Scientifique : UMR7538, Université Sorbonne Paris nord
Université Sorbonne Paris Nord, 99 Avenue Jean-Baptiste Clément, F-93430 Villetaneuse -  France

 In the present work, we demonstrate the phase-stabilization of a MIR QCL source to a novel 9 µm frequency comb originating from a femtosecond mode-locked fiber laser. This MIR comb system has been commercially supplied by MenloSystems. By beating a DFB-QCL with one of the comb tooth on a fast QCD detector, we were able to phase-stabilize the resulting relative beat-note signal at the Hz level , and thus to copy the spectral performance of the MIR comb to the QCL. By measuring the beating of the comb teeth, we also demonstrated the electrical bandwidth optical characterisation of a quantum detectors .

In the future we are aiming to combine this stabilized QCL with a quantum detector to demonstrate the most sensitive heterodyne detection system that will endow applications such as high-resolution spectroscopy, coherent LIDAR measurements, test and design of systems for free-space coherent optical communications with GBits/s data transfer rate.


Online user: 40 Privacy
Loading...